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Based on the Langevin description of the continuous time random walk �CTRW�, we consider a generali-
zation of CTRW in which the waiting times between the subsequent jumps are correlated. We discuss the cases
of exponential and slowly decaying persistent power-law correlations between the waiting times as two generic
examples and obtain the corresponding mean squared displacements as functions of time. In the case of
exponential-type correlations the �sub�diffusion at short times is slower than in the absence of correlations. At
long times the behavior of the mean squared displacement is the same as in uncorrelated CTRW. For power-
law correlations we find subdiffusion characterized by the same exponent at all times, which appears to be
smaller than the one in uncorrelated CTRW. Interestingly, in the limiting case of an extremely long power-law
correlations, the �sub�diffusion exponent does not tend to zero, but is bounded from below by the subdiffusion
exponent corresponding to a short-time behavior in the case of exponential correlations.
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I. INTRODUCTION

The continuous time random walk �CTRW� model was
originally introduced by Montroll and Weiss in their seminal
paper of 1965 �1�. Since that time the CTRW was proved to
be a useful tool for the description of systems out of equilib-
rium, especially of anomalous diffusion phenomena charac-
terized by nonlinear time dependence of mean squared dis-
placement �MSD�, see, e.g., the reviews �2–4� and references
therein. Within the simplest CTRW picture, the “jump
model,” diffusion of a particle is considered as a sequence of
independent random jumps occurring instantaneously; the
waiting times between the successive jumps are independent
random variables. Thus, the motion of a particle is com-
pletely determined by the two probability density functions
�PDFs�, namely, jump length PDF and waiting-time �or
pausing-time� PDF. Other CTRW schemes �velocity and
two-state models� account for the constant velocity between
the points of halt �5,6�.

In the present paper we concentrate on the particular case
of the jump CTRW model where the distribution of waiting
times �tn , n=1,2 , . . . between the jumps �given by its prob-
ability density ���t�� possesses long power-law asymptotics,
���t� should be proportional to ��t��1+��, 0���1, such
that the mean waiting time diverges, whereas the variance a2

of the jump length is finite. This case goes back to the paper
by Scher and Montroll on amorphous semiconductors �7�,
and leads to subdiffusion of a particle, that is, the MSD
growing sublinearly with time. Besides the probabilistic ap-
proach following the lines of the work of Montroll and Weiss
�1�, CTRW can be described using generalized master equa-
tions and within the Langevin approach. It was shown �8�
that the generalized master equation for the jump CTRW
theory is reduced to a time-fractional Fokker-Planck equa-
tion in the long time limit. Since then the theory of time-
fractional kinetic equations was intensively developed, see
the reviews �9–11�. On the other hand, Fogedby �12� intro-
duced a Langevin approach to time-fractional dynamics and

demonstrated how time-fractional diffusion equation arises
from the corresponding coupled Langevin equations. Re-
cently, this approach was further developed in a series of
papers by Friedrich et al. �13–16�.

The purpose of the present work is to generalize the
CTRW approach by including correlations between the wait-
ing times. This is in line with the recent studies of the CTRW
with correlated jumps �17�. Apart from purely theoretical in-
terest, such model is motivated by possible existence of such
correlations in biological movements �18� and in financial
applications of CTRW �19�. As a tool to consider the effect
of correlations between the waiting times we use the Lange-
vin approach. The structure of the paper is as follows. The
Langevin approach to uncorrelated CTRW is recalled briefly
in Sec. II. In Sec. III we propose its generalization by includ-
ing memory effects into the Langevin description and get a
general expression for the MSD. In subsequent sections
�Secs. IV and V we consider the particular examples of ex-
ponential and power-law correlations between waiting times
and derive the MSD for both cases. In Sec. VI we present
results of numerical simulations corroborating the ones of
analytical consideration. For the reader’s convenience, some
details of the derivation are shifted to the Appendixes A and
C.

II. LANGEVIN APPROACH TO SUBDIFFUSIVE CTRW
MODEL

In this section we recall briefly the subdiffusive jump
CTRW model �20� and the corresponding Langevin approach
�12–14�. The key element of the CTRW is the subordination
of random processes �21�. For example, for the PDF to find a
particle �with continuous distribution of step lengths� at point
x at time t one has

f�x,t� = �
n

f1�x,n�hn�t� , �1�

where f1�x ,n� is a PDF to find a particle at point x after
n steps, and hn�t� is the probability to make exactly n steps
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up to time t. The function hn�t� is connected to the waiting

time PDF ���t� via their Laplace transforms h̃n�u�
= �1− �̃�u���̃n�u� /u, see, e.g., �20�. Here, the random number
of steps plays the role of internal, operational time governing
the system’s evolution. In the classical Scher-Montroll pic-
ture hn�t� corresponds to a random process in which n grows
sublinearly in t, thus the operational time is always in delay
compared with the physical one, and the overall process
x�n�t�� is subdiffusive. From Eq. �1� it follows e.g., that the
mean squared displacement �x2�t�� is essentially a function of
the mean number of steps,

�x2�t�� = a2�n�t�� = a2N�t� , �2�

where the mean number of steps performed up to time t,
N�t�, is defined as N�t�=�n=0

� nhn�t�.
The CTRW process is semi-Markovian in the sense that at

each new step a displacement �x and the corresponding
waiting time �t�0 are chosen at random from the corre-
sponding probability distributions and are independent on the
prehistory of the process. The overall displacement after nth
step and the �physical� time of �n+1�-st step are given by the
sums of the corresponding increments, thus the physical time
t of jump and the displacement x�t� are Markov chains in the
internal variable n.

The Fogedby’s approach �12� expresses this property in a
continuum approximation via the coupled Langevin equa-
tions with the two stationary noise sources,

dx�s�
ds

= ��s� , �3�

dt�s�
ds

= ��s� , �4�

where the random walk x�t� is parametrized in terms of a
continuous variable s, which actually has a meaning of op-
erational time: the process s�t� is a continuum analog of the
number of steps n�t�. Now, we specify the random processes
x�s� and t�s� by explicitly defining the properties of the noise
sources in Eqs. �3� and �4�. Namely, the stationary random
process ��s� is a white Gaussian noise, ���s��
=0, ���s���s���=2	�s−s��, thus the process x�s�
=�0

sds���s�� is a Wiener process with the PDF

f1�x,s� =
1

	4
s
exp
−

x2

4s
� �5�

�we take x�0�=0�. In its turn, the stationary random process
��s� is a white alpha-stable Lévy noise, which takes positive
values only. That is, the process

t�s� = �
0

s

ds���s�� �6�

is an �-stable totally skewed Lévy motion with the Lévy

index �, 0���1. The characteristic function L̂��k ,s�, that
is the Fourier transform of the PDF L��t ,s�, has the form

L̂��k,s� = �
0

�

dteiktL��t,s� = exp− s�k�� exp
−
i
�

2
sgn k�� .

�7�

Here we use Feller-Takayasu canonical form for strictly
stable distributions, see �21–23�. The Laplace transform

L̃��� ,s� of the PDF L��t ,s� reads �21,24�,

L̃���,s� = �
0

�

dte−�tL��t,s� = exp�− ��s�, 0 � � � 1.

�8�

For the sake of simplicity we consider both noises � and � to
have unit intensities.

The PDF f�x , t� of the process x�t� is then given by

f�x,t� = �
0

�

dsf1�x,s�h�s,t� , �9�

being the continuous analog of Eq. �1�. Here h�s , t� is the
PDF of random variable s at time t. The random function s�t�
is inverse to t�s� defined by Eq. �6�. To determine h�s , t�, we
note that the random function t�s� is monotonical,

s2 � s1 ⇒ t�s2� � t�s1� , �10�

so that

�„s − s�t�… = 1 − �„t − t�s�… , �11�

where ��x� is the Heaviside step function, ��x�=1 for x
�0, ��x�=0 for x�0, ��x=0�=1 /2. Statistical averaging
of Eq. �11� gives

��„s − s�t�…� = 1 − ��„t − t�s�…� . �12�

The PDF h�s , t� is therefore written as

h�s,t� = �	„s − s�t�…� =
�

�s
��„s − s�t�…� = −

�

�s
��„t − t�s�…� .

�13�

For the Laplace transform h̃�s ,�� we get, with the use of Eq.
�8�,

h̃�s,�� = −
�

�s��0

�

dte−�t�„t − t�s�…�
= −

�

�s

1

���0

�

dte−�t	„t − t�s�…�
= −

�

�s

1

�
L̃���,s� = ��−1e−s��

. �14�

The inverse Laplace transform of h̃�s ,�� has been found in
Ref. �25�, see Eqs. �16� and �24� there,

h�s,t� =
t

�s1+1/�L�
 t

s1/�� , �15�

where L��y� is a one-sided Lévy stable PDF whose Laplace

transform is L̃��u�=exp�−u��. Equation �15� together with
Eq. �5� defines the PDF f�x , t� via Eq. �9�.
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In our paper we are interested in the MSD,

�x2��t� = �
−�

�

dxx2f�x,t� = 2�
0

�

dssh�s,t� . �16�

With changing the variable of integration, s→y= t /s1/�, Eq.
�16� reads

�x2��t� = 2t��
0

�

dyy−�L��y� . �17�

Using the formula �A15�, we arrive at

�x2��t� =
2

�1 + ��
t�, �18�

which is a known result from the theory of subdiffusive
CTRW �8,26�.

III. CORRELATED PROBLEM

Let us now consider the CTRW where the waiting times
between the subsequent steps are not independent. The sim-
plest way to introduce such dependence is to assume the
corresponding waiting times to be weighted sums of inde-
pendent random variables,

�tn = �
j=0

n

Mn,j� j , �19�

where Mn,j =M�n− j� is a memory function. Independent ran-
dom variables � j are identically distributed with PDF ����;
the uncorrelated case corresponds to Mn,j =	nj. In what fol-
lows we take ���� to be a one-sided Lévy stable PDF L����,
as above. Two types of memory functions are considered: an
exponential one, given by geometric series, M�k�= �1−q�qk

with 0�q�1 �normalized�, which corresponds to M�k�
=�−1 exp�−k /�� with ���1−q�−1 for q close to unity, and a
power-law one M�k�=k−� with 0���1 �not normalizable�.

In the continuous model the corresponding memory can
be introduced also into the Langevin equation for t�s� �com-
pare with Eq. �4��,

dt�s�
ds

= �
0

s

ds�M�s − s����s�� , �20�

where M is a non-negative continuous memory function, and
��s� are the same noises as in Eq. �4�. The random process
x�s� is still defined by Eq. �3�.

The exponential memory function in the first case corre-
sponds now to

M�s� =
1

�
exp
−

s

�
� . �21�

The power-law function corresponds to M�s��s−�. In par-
ticular, we use

M�s� =
s−�

�1 − ��
, 0 � � � 1, �22�

in order to allow for a continuous limiting transition to a
noncorrelated case at �→1.

Integrating Eq. �20� we get

t�s� = �
0

s

ds��
0

s�
ds�M�s� − s����s�� = �

0

s

ds���s����s,s�� ,

�23�

where

��s,s�� = �
s�

s

ds�M�s� − s�� . �24�

The characteristic function p̂�k ,s� of the process t�s� takes
the form, see Appendix B,

p̂�k,s� = �
−�

�

dteiktp�t,s�

= exp− �k����s�exp
−
i
�

2
sgn k��, 0 � � � 1,

�25�

where

��s� = �
0

s

ds���
s�

s

ds�M�s� − s����

. �26�

One can see that the variable s in Eq. �7� is substituted by
��s� in Eq. �25�. Correspondingly, for the Laplace transform
p̃�� ,s� of the PDF p�t ,s� we get

p̃��,s� = �
0

�

dte−�tp�t,s� = exp�− ����s�� . �27�

Now, we simply go along the lines of Sec. II. For the func-

tion h̃�s ,�� we get

h̃�s,�� = −
�

�s

1

�
p̃��,s� = ��−1���s�p̃��,s� �28�

�compare with Eq. �14��, and after the inverse Laplace trans-
form �→ t we obtain

h�s,t� =
���s�

�

t

���s��1+1/�L� t

���s��1/�� . �29�

The MSD is obtained by inserting Eq. �29� into Eq. �16�,

�x2��t� =
2

�
�

0

�

dss���s�
t

���s��1+1/�L� t

���s��1/�� .

�30�

Changing variable s→y= t / ���s��1/�, we get

�x2��t� = 2�
0

�

dy�−1
 t�

y��L��y� , �31�

where �−1��� is an inverse function of ��s�, that is
�−1���s��=s. In the uncorrelated limit ��s�=s, thus �−1���
=�, and Eq. �31� is equivalent to Eq. �17�.
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IV. EXPONENTIAL CORRELATIONS

We choose M�s� as given by Eq. �21�. Then, using Eq.
�26� we get

��s� = �
0

s

ds��1 − e−s�/���. �32�

Now we consider the MSD in the limits of short and long
times, respectively.

Short times. At small values of s, s��, we approximate
��s� by

��s� � �
0

s

ds�
 s�

�
��

=
s1+�

�1 + ���� . �33�

Thus,

�−1��� = ��1 + �����1/�1+���1/�1+��. �34�

Equation �31� then takes the form

�x2��t� = t�/1+�2�1 + ��1/�1+����/�1+���
0

�

dyy−�/�1+��L��y� .

�35�

With the use of Eq. �A14� we get ultimately

�x2��t� = K�t�/�1+��, t � � , �36�

where

K� = 2��/�1+���1 + ��1/�1+��

 1

1 + �
�

�
 �

1 + �
� . �37�

We note that this result can be also obtained by the use of the
Laplace method, see Appendix C.

Long times. At long times, s��, Eq. �32� gives ��s��s.
Therefore, �−1���=�, so that Eq. �31� gives

�x2��t� = 2t��
0

�

dyy−�L��y� =
2t�

�1 + ��
, �38�

see Eq. �A15�. This result coincides with that obtained in an
uncorrelated CTRW, see Eq. �18�.

V. POWER-LAW CORRELATIONS

Now we consider power-law memory kernel as given by
Eq. �22�. Equation �26� then leads to

��s� =
1

��2 − ����

s�

�
, �39�

where

��1 − �� + 1 = � , �40�

and therefore

�−1��� = �1/���2 − ����/��1/�. �41�

Inserting Eq. �41� into Eq. �31� gives

�x2�t�� = 2t�/���2 − ����/��1/��
0

�

dyy−�/�L��y� . �42�

With the use of Eq. �A14� we get

�x2��t� = K�,�t�/�, �43�

where

K�,� = 2��2 − ����/�
�1/�
1

�
�

�
�

�
� . �44�

In the case of normal diffusion �=�=1 Eq. �44� gives
�x2�t��=2t, as it should. In case of �=1, ��1 Eqs. �43� and
�44� reproduce the result of Eq. �18�. The case ��1 leads to
slower subdiffusion than in the uncorrelated case, with the
exponent � /� being monotonic in �. In the limit of very
strong correlations, �=0, one obtains

�x2��t� � t�/�1+��, �45�

i.e., the exponent of anomalous diffusion � /� is bounded
from below and does not tend to zero even for �→0. Inter-
estingly, this lower bound corresponds to the short time be-
havior in the case of exponential correlations, Eq. �36�. In the
limiting case �→1 leading to a normal diffusion law in the
absence of correlations, the correlations between waiting
times lead to decrease of the time exponent from 1 for �
=1 to 1/2 for very strong correlations, �=0.

VI. NUMERICAL SIMULATIONS

The asymptotic results of our continuous approach are
corroborated by numerical simulations of a discrete model.
Since the mean squared displacement in the CTRW follows
exactly the mean number of steps N�t�, see Eq. �2�, we only
present the results for this last quantity.

We thus generate the waiting times according to Eq. �19�
with the corresponding memory functions M�k�. The results
presented below correspond to �=1 /2. The independent ran-
dom variables �i following the one-sided Lévy-Smirnov dis-
tribution

���� = �2
�−1/2�−3/2 exp�− 1/2�� �46�

are generated using Janicky-Weron algorithm �27�. We note

that Laplace transform of Eq. �46� reads as �̃�u�=exp�
−�2u�1/2�, which differs by a factor 	2 in the exponent from

the form L̃��u�=exp�−u�� adopted in our analytical calcula-
tions, see Sec. II. The factor 	2 will be important for our plot
in Fig. 3. Equation �46� implies that the time is measured in
units of the scale factor of the distribution which equals to
one. From the sequences of jump times the numbers of
jumps performed up to fixed output times tout are obtained
and averaged over 106 independent realizations of the pro-
cess.

The behavior of N�t� in the exponentially correlated pro-
cess with q=0.9 and for power-law correlations with three
different values of �=0.5, 0.25 and 0.1 are presented in Fig.
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1. One readily infers that at long times the N�t�-dependence
follows power laws N�t�� t�. The values of � are obtained as
least square fits to the curves on double-logarithmic scales
over the three last decades in time and equal to �=0.50 for
the exponential correlations and �=0.39, 0.36, and 0.34 for
the given values of �, respectively. These values, within the
uncertainty limits, coincide with theoretical predictions �
=� / ���1−��+1� being 2 /5=0.4, 4 /11�0.364, and 10 /29
�0.349.

In Fig. 2 the behavior of N�t� is plotted versus t on a
log-log scale for q=0.999. The short- and long time asymp-
totical behavior is clearly seen. Note that taking q very close
to unity is necessary since the short-time asymptotics persists
only until t����1−q�−1, see Eq. �36�. The dotted line rep-
resents the least square fit to the data over the first three
decades �1� t�103� in time and has a slope 0.33 �theoretical

value 1/3�. The full line represents the least square fit to the
data over the last three decades �108� t�1011� and has a
slope 0.49 �theoretical value 1/2�.

Figure 3 illustrates the behavior of N�t� for exponential
correlations with different values of q=0.5, 0.9, 0.99, and
0.999. Plotted is A�t�=N�t� / t� as a function of time on a
logarithmic scale. The fact that A�t� converges to the same
value �showing only fluctuations of the order of a few per
mille� for all four different values of q is clearly seen �note
that the whole ordinate axis corresponds to the change of
3%�. The asymptotic value of A�t� �under the time units
adopted� is equal to 1 / �	2�3 /2��=	2 /
=0.798, which is
shown in Fig. 3 as a horizontal line. Numerical results agree
with this analytical prediction within the error range �28�.

VII. SUMMARY

In uncorrelated subdiffusive CTRW �jump model� the in-
dependent waiting times have a probability decaying as a
power law with the exponent ��1, thus the mean waiting
time diverges, while the second moment of the jump length
distribution is finite. As the result, the mean squared dis-
placement grows as t�. In our paper we consider the gener-
alization of CTRW model by including correlations between
waiting times. We use the Langevin approach to the CTRW
and generalize it by introducing a memory in the Langevin
equation for temporal variable and obtain the general expres-
sion for the MSD as a function of time, Eq. �31�. We con-
sider two generic types of correlations between the time in-
crements, namely short-range exponential correlations and
long-range power-law ones. For exponential correlations
with typical range � the mean squared displacement grows
as t�/�1+�� at short times, t��, whereas at long times, t��,
it exhibits the same behavior as in the uncorrelated case, that
is grows as t�. For the power-law correlations decaying with
the exponent �, 0���1, the MSD grows as t�/�, where �
=1+��1−��. In the case of very strong correlations, �=0,
the diffusion exponent is bounded from below by � / �1+��,
which coincides with the short time exponent in case of ex-
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FIG. 1. Number of steps as a function of time on a log-log scale
for exponential correlations with q=0.9 �black diamonds� and for
power-law correlations with �=0.5 �empty rectangles�, 0.25 �black
triangles� and 0.1 �empty circles�. The corresponding fitting lines
have the slopes close to the analytical ones, see text for details.
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FIG. 2. Number of steps as a function of time on a log-log scale
for exponential correlations with q=0.999. The dotted line repre-
sents the power-law asymptotics at small times whereas the full line
represents the asymptotics at large times. See text for details.
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FIG. 3. The behavior of A�t�=N�t� / t� as a function of time on a
logarithmic scale for four values of q=0.5, 0.9, 0.99, and 0.999
�from left to right�.
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ponential correlations. Thus, in the limiting case of normal
diffusion, �=1, and very strong correlations we get 1/2 for
the diffusion exponent. We note that our approach naturally
allows us to include correlations between jump length by the
use of non-White-noise in the Langevin equation for spatial
variable.
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APPENDIX A: USEFUL FORMULAS FOR THE MOMENTS
OF STABLE DISTRIBUTIONS

1. General expression for the qth moment

The qth moment ��x�q� of the random variable x distrib-
uted with the PDF f�x� is given by �29�

��x�q� = 2
−1�1 + q�sin�
q/2��
0

�

dkk−q−1�1 − Re f̂�k�� ,

�A1�

where f̂�k� is the corresponding characteristic function. To
show this we first note that

�
0

�

dkk−q−1�1 − e−pk� = pqq−1�1 − q� �A2�

�integration by parts�. Making an analytical continuation p
= ix, and using

�ix�q = eiq�
/2�sign�x��x�q, �A3�

we get

�
0

�

dkk−q−1�1 − cos kx� = �x�qq−1�1 − q�cos
q


2
� ,

�A4�

and

�x�q = 2
−1�1 + q�sin
q


2
��

0

�

dkk−q−1�1 − cos kx� .

�A5�

Averaging Eq. �A5� over the distribution of x we obtain

��x�q� = �
−�

�

dx�x�qf�x�

= 2
−1�1 + q�sin

q

2
�

��
0

�

dkk−q−1�1 − Re�
−�

�

dxf�x�eikx� , �A6�

and arrive at Eq. �A1�.

2. qth moment of symmetric Lévy stable distribution

We take the characteristic function of the symmetric
stable distribution as

f̂�k� = e−���k��, 0 � � � 2, �A7�

where � is a scale parameter.
Then, from Eq. �A1�

��x�q� = 2
−1�1 + q�sin

q

2
��q�

0

�

d��−q−1�1 − e−��
� ,

q � � . �A8�

Performing integration over � we arrive at

��x�q� =
2


q
�1 + q�
1 −

q

�
�sin

q

2
��q. �A9�

This result was obtained in Ref. �30�.

3. Negative moments of one-sided Lévy stable distribution

Let us calculate

�x−q� = �
0

�

dxx−qL��x� , �A10�

where L��x� is one-sided �totally skewed� alpha-stable Lévy

distribution whose Laplace y→u transform is L̃�u�
=exp�−u��.

At first, we use

�
0

�

dssq−1e−xs = x−q�q�, q � 0, �A11�

thus

x−q =
1

�q��0

�

dssq−1e−xs. �A12�

Then,

�x−q� = �
0

�

dxx−qL��x�

=
1

�q��0

�

dssq−1�
0

�

dxe−sxL��x�

=
1

�q��0

�

dssq−1e−s�
=

1

��q��0

�

d��−1+q/�e−�,

�A13�

and finally

�x−q� =


 q

�
�

��q�
. �A14�

In a particular case q=� Eq. �A14� gives

�x−�� =
1

�1 + ��
. �A15�
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APPENDIX B: CHARACTERISTIC FUNCTION OF THE
PROCESS t(s) IN THE CORRELATED

CASE, Eq. (25)

Let ��s� be a white Lévy noise with the one-sided totally
skewed PDF. Its discrete-time approximation consists of a
sequence of independent identically distributed random vari-
ables ��i�, i=1,2 , . . . ,N, here N plays the role of a discrete
time. The characteristic function p̂��k� of the random vari-
ables ��i� is given by

p̂��k� = exp− �k�� exp
−
i
�

2
sgn k�� . �B1�

Then, the characteristic function L̂��k ,s� of an �-stable to-
tally skewed Lévy motion t�s�=�0

sds���s��, see Eq. �6�, is
obtained with the use of its discrete-time approximation,
t�s�→�i=1

N �i, as

L̂��k,s� → �
i=1

N

p̂��k�

= exp− n�k��exp
−
i
�

2
sgn k��

→ exp− s�k��exp
−
i
�

2
sgn k�� . �B2�

According to Eq. �23� t�s�=�0
sds���s����s�� �where the first

variable of function � is omitted�, and ��s� is a white Lévy
noise. The discrete-time approximation to this integral is
t�s�→�i=1

N �i�i. The characteristic function of each summand
is obtained by noting that if some random variable y has a

characteristic function f̂ y�k�, then the characteristic function

of the random variable z=�y, �=const, is f̂ z�k�= f̂ y��k�.
Then, the characteristic function p̂�k ,s� of the random pro-
cess t�s� reads

p̂�k,s� → �
i=1

n

exp�− �i
��k�� exp
−

i
�

2
sgn k��

= exp�− �k���
i=1

n

�i
� exp
−

i
�

2
sgn k��

→ exp�− �k���
0

s

ds����s��exp
−
i
�

2
sgn k�� ,

�B3�

which result is used in derivation of Eq. �25�.

APPENDIX C: SHORT TIME ASYMPTOTICS OF THE
MSD IN CASE OF EXPONENTIAL CORRELATIONS

With the use of Eqs. �16�, �27�, and �28� we get for the
Laplace transform of the MSD,

�x2���� = 2�
0

�

dssh̃�s,�� = 2��−1�
0

�

dss���s�e−����s�.

�C1�

The integral

I��� = �
0

�

dss���s�e−����s� �C2�

can be evaluated at large � by the use of the Laplace method.
Indeed, this integral is of the form

I�x� = �
a

b

dse−xp�s�q�s� , �C3�

with x=��, a=0, b=�,

p�s� = D���s� � p�s = a = 0� = 0, p�s → 0� �
D�s1+�

�1 + ���� ,

�C4�

q�s� = s���s�, and q�s → 0� �
s1+�

�� . �C5�

Thus, we see that the conditions of the Theorem 7.1 from
Ref. �31� are fulfilled. The integral I�x� can be evaluated as

I�x� �
Q

�

 �

�
� e−xp�a�

�Px��/� , �C6�

with

Q =
1

�� , � = 2 + �, P =
1

�1 + ���� , � = 1 + � .

�C7�

With the use of Eqs. �C6� and �C7� we get

�x2���� = 2��−1I����

= 2��/�1+���1 + ��1/�1+��
1 +
1

1 + �
��„−�1+2*��/�1+��….

�C8�

Now, using the Laplace transform pair L�tk−1����=�k� /�k,
we obtain the result for �x2��t� which coincides with that
obtained by the different method in Sec. IV, see Eqs. �36�
and �37�.
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